skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yajuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the technology trend of hardware and workload consolidation for embedded systems and the rapid development of edge computing, there has been increasing interest in supporting parallel real-time tasks to better utilize the multi-core platforms while meeting the stringent real-time constraints. For parallel real-time tasks, the federated scheduling paradigm, which assigns each parallel task a set of dedicated cores, achieves good theoretical bounds by ensuring exclusive use of processing resources to reduce interferences. However, because cores share the last-level cache and memory bandwidth resources, in practice tasks may still interfere with each other despite executing on dedicated cores. Such resource interferences due to concurrent accesses can be even more severe for embedded platforms or edge servers, where the computing power and cache/memory space are limited. To tackle this issue, in this work, we present a holistic resource allocation framework for parallel real-time tasks under federated scheduling. Under our proposed framework, in addition to dedicated cores, each parallel task is also assigned with dedicated cache and memory bandwidth resources. Further, we propose a holistic resource allocation algorithm that well balances the allocation between different resources to achieve good schedulability. Additionally, we provide a full implementation of our framework by extending the federated scheduling system with Intel’s Cache Allocation Technology and MemGuard. Finally, we demonstrate the practicality of our proposed framework via extensive numerical evaluations and empirical experiments using real benchmark programs. 
    more » « less
  2. null (Ed.)